

DRAFT AGENDA

Upper Hangman Creek Watershed Advisory Group

Wednesday September 20, 2006 9:00 am – 12:00 pm Tensed City Hall 31.1.C. Street, Tensed ID

9:00 - 9:15

1. Introductions and Meeting Agenda

9:15 - 9:45

- 2. Review of Beneficial Uses and Water Quality Criteria
 - A. Addition of pollutants to Integrated Report
 - ID17010306PN001_02: Sediment and Bacteria
 - ID17010306PN001_03: Temperature

9:45 - 11:30

- 3. Methods used to develop pollutant loads and Draft results
 - A. Temperature
 - · Potential Natural Vegetation (PNV)

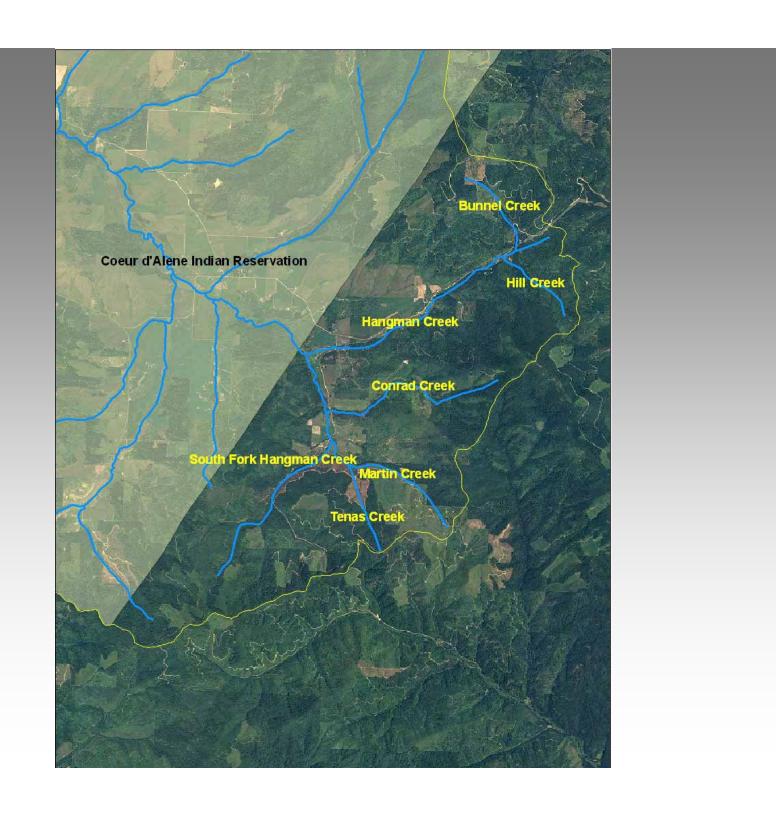
Break

- B. Sediment
 - Stream bank and Road evaluation
- C. Bacteria
 - · Mathematical calculations

11:30 - 11:45

4. Section 4, Summary of Past and Present Pollution Control Efforts

11:45 - 11:55


5. Update Upper Hangman Creek TMDL Draft Timelines and Milestones

11:55 - 12:00

6. Future WAG meetings

Upper Hangman Creek

Beneficial Uses

- Beneficial Uses are any of the various uses of water
 - Beneficial Uses of Upper Hangman Creek include cold water aquatic life, salmonid spawning and secondary contact recreation
- Beneficial uses are broken into three categories
 - Existing uses actually attained in the water body on or after November 28, 1975
 - Designated uses specified in water quality standards
 - Presumed all waters without existing or designated beneficial uses assigned, DEQ will apply the numeric cold water criteria and primary or secondary contact recreation criteria

Upper Hangman Creek Use Designation

Water Body	Uses	Type of Use
Hangman Creek	Cold water aquatic life Secondary contact recreation	Designated
Hangman Creek	Salmonid spawning	Existing
Tributaries to Hangman Creek	Cold water aquatic life Secondary contact recreation	Presumed
Tributaries to Hangman Creek	Salmonid spawning	Existing

Applicable Water Quality Criteria

Bacteria

E. coli concentrations are not to exceed 126 E. coli organisms/100ml.

Nutrients

 Narrative standard - surface water shall be free from excess nutrients that cause visible slime growth.

Sediment

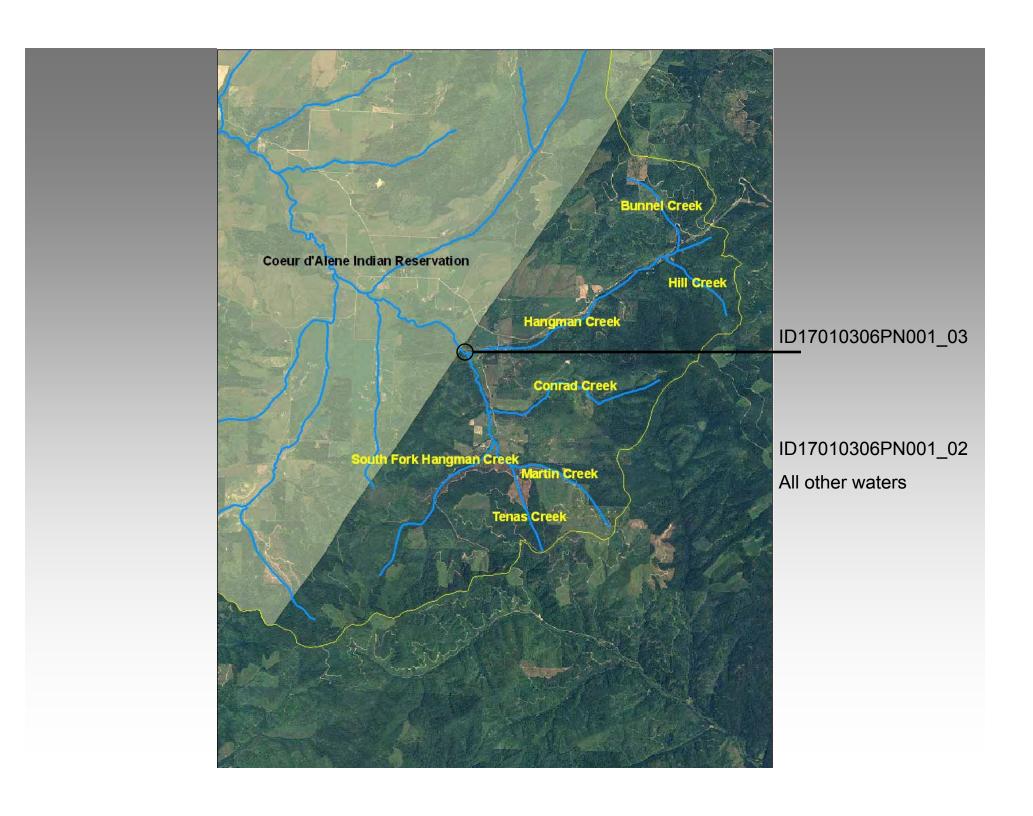
 Narrative standard - sediment shall not be in quantities which impair designated beneficial uses.

Temperature

Numeric standard - cold water aquatic life daily max 22°C salmonid spawning daily max 13°C

From Idaho water quality standards (IDAPA 58.01.02.200.09), if natural conditions exceed numeric water quality criteria, exceedance of the criteria is not considered a violation of water quality standards.

Pollutant Additions to Idaho's Impaired Waters List


Sediment and Bacteria

 ID17010306PN001_02, all waters above the South Fork Hangman confluence with Hangman Creek including Hangman Creek.

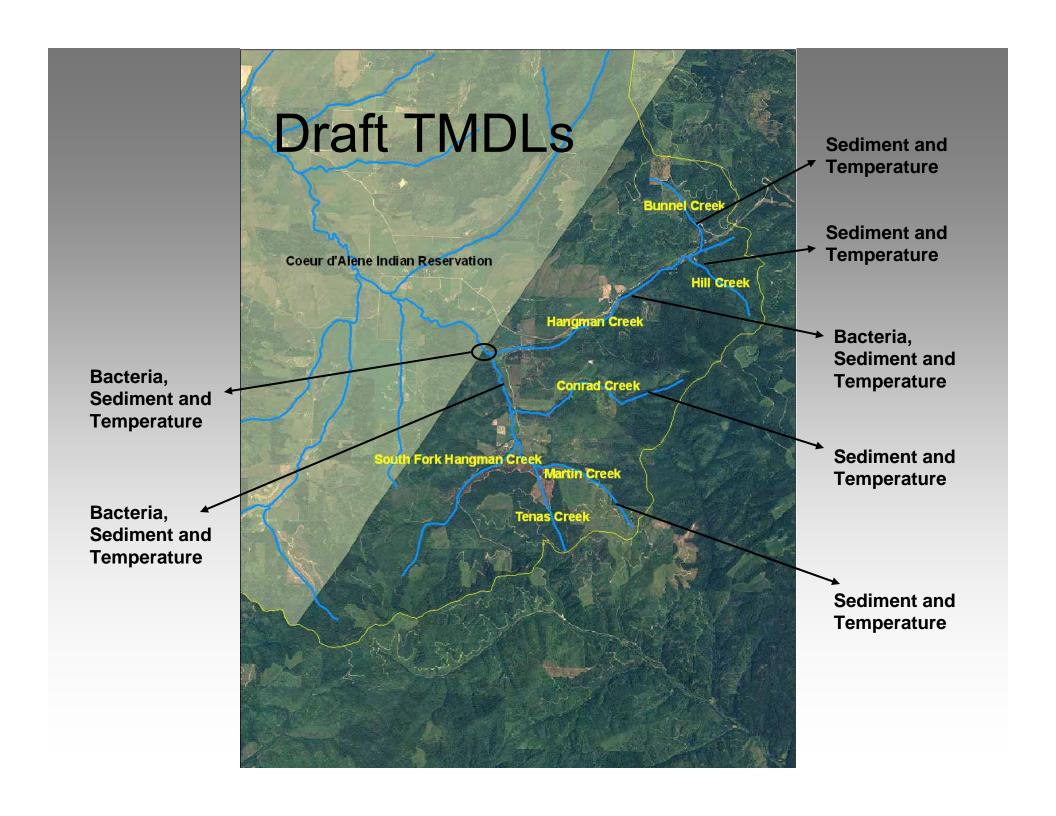
Temperature

 ID17010306PN001_03, Hangman Creek below the South Fork Hangman Creek confluence.

Assessment units determined to be exceeding Idaho Water Quality Standards during Subbasin Assessment (SBA) development.

Draft Upper Hangman Creek Assessment and TMDL

Upper Hangman Creek Assessment and Total Maximum Daily Load


Draft

Department of Environmental Quality

July 2005

- Written by DEQ Technical Services
 - Mark Shumar
 - Don Zaroban
- 151 pages
- Addresses
 - Sediment
 - Temperature
 - Bacteria
 - Nutrients
- Completed July 2005

Draft Upper Hangman Creek TMDL Overview

Temperature

- All streams assessed were determined to be exceeding temperature standards
- All streams assessed given 90% shade target
- Solar loading reductions ranged from 50% 0%

Sediment

- Bank stability, mass failures and road erosion used to determine appropriate sediment load
- 80% bank stability set as target, 50% over natural background set as target for roads
- Sediment loading reductions ranged from 73% 0%

Bacteria

- Water quality standard is target, 126 cfu/100 ml of E. coli.
- Reductions ranged from 85% 0%

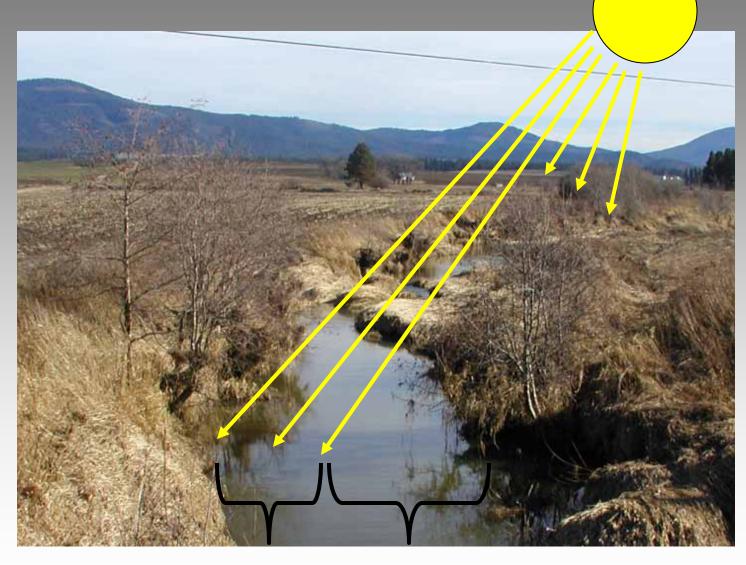
Nutrients

- No TMDL developed, recommended nutrient de-listing
- Nutrients found to be in concentrations near reference conditions

TMDL Development Methods

- Temperature
 - Potential Natural Vegetation (PNV)
- Sediment
 - Stream bank, mass failures and road evaluation
 - 50% above natural background
- Bacteria
 - Sample concentrations and flow

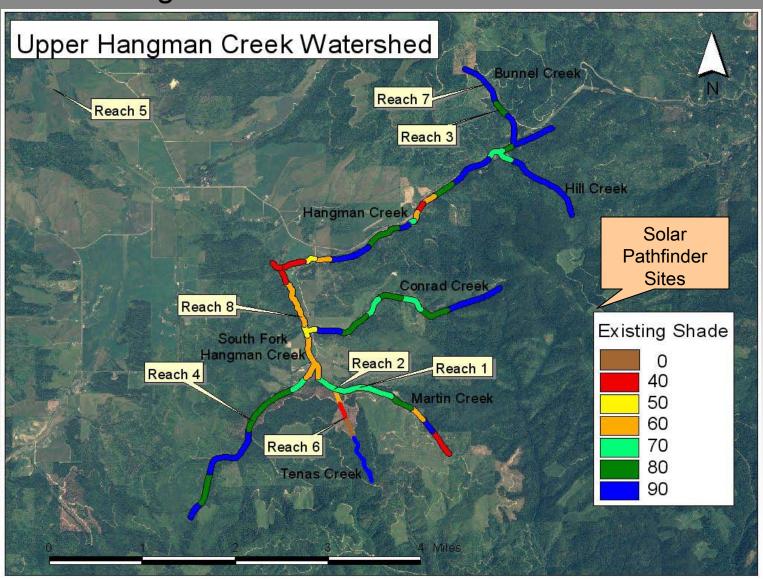
Potential Natural Vegetation


- Provides the expected effective shade (along with topography).
- Produces natural stream temperatures (assuming no point sources, dams, etc.).
- Equates to natural background conditions in Idaho WQS.

PNV Steps

- 1. Shade estimates using satellite image analysis.
- 2. Field validation of initial shade estimates.
- 3. Numeric calculation of existing load and potential natural load. Difference equals load allocation.

Shade Estimates



Un-shaded 40%

Shaded 60%

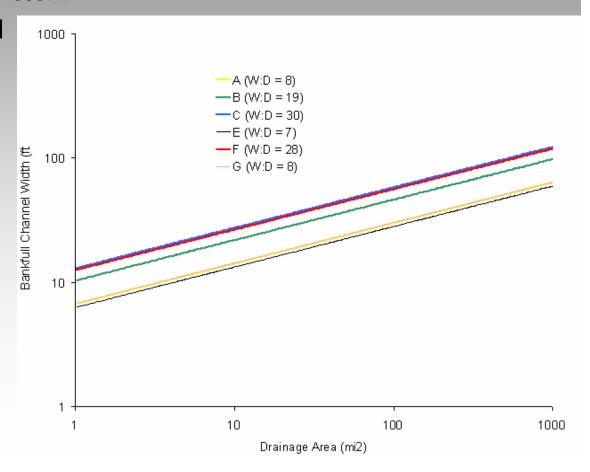
Step 1

Satellite image shade estimates

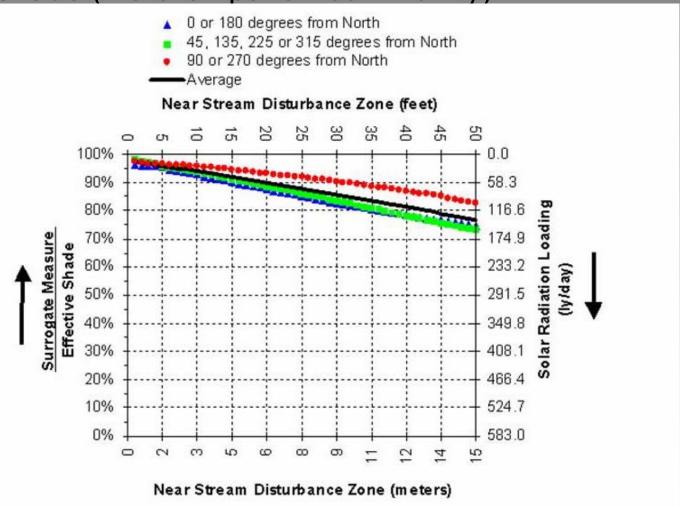
Step 2

Field validation of initial shade estimates

Collecting existing shade values


Step 3

Solar load calculations

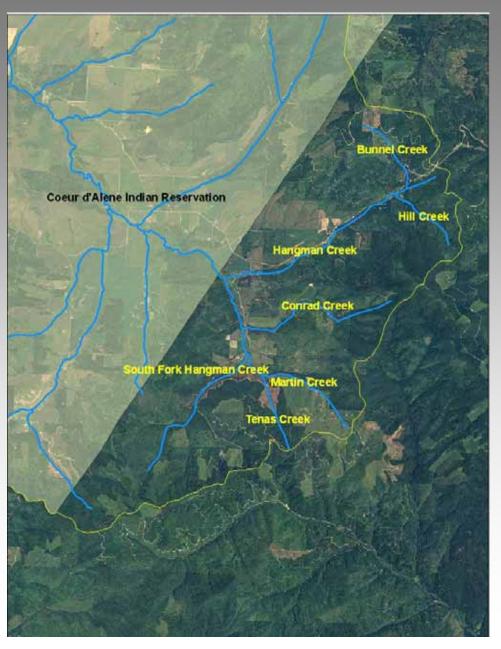

PNV load – Existing load = Load reduction

Solar load under PNV = Load capacity

- Determining solar load
 - Stream width determined from drainage area curve
 - All streams 3m or less
 - Headwater streams = 0.5m
 - Lower Hangman andLower SF Hangman3m at lowest portion

PNV shade (mature riparian community)

Ponderosa pine and Grand fir shade curve developed for the Clearwater River

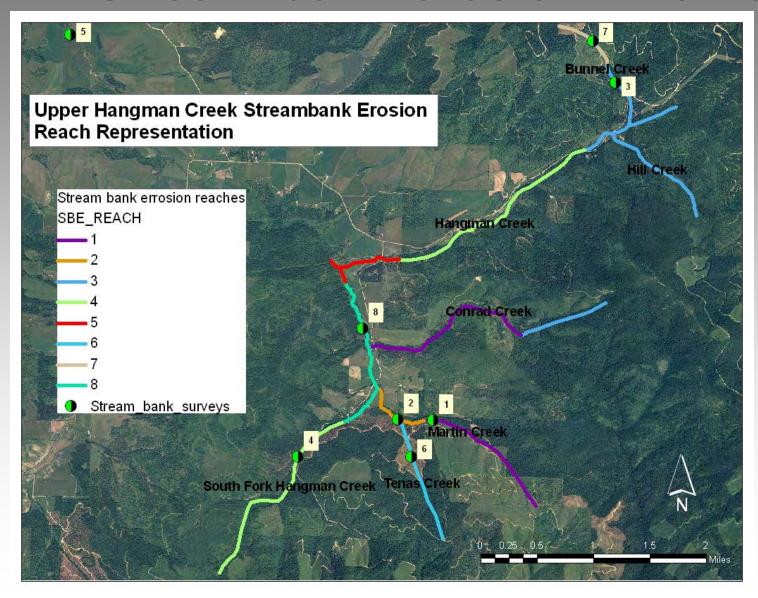

- 90% shade target
 - Any tree or larger shrub community, deciduous or coniferous, is capable of providing ≥ 90% shade for streams 3 meters or smaller.

(Solar load from Flat Plate collector) X (100-Target Shade or Existing Shade)

Solar load reaching stream

- Solar load reaching stream under natural conditions minus solar load reaching stream under existing conditions = load reduction.
- Streams reaching natural conditions and exceeding numeric temperature standard still meet Idaho water quality standards.

Solar Load Reductions


- Bunnel Creek 15%
- Hill Creek 25%
- Conrad Creek 52%
- Hangman Creek 63%
- Martin Creek 69%
- SF Hangman Creek 70%
- Tenas Creek 74%

Break

Sediment

- Narrative standard
 - sediment shall not be in quantities which impair designated beneficial uses.
- Surrogate Targets
 - 80% Stream bank stability
 - IDEQ data collection 2005
 - ≤50% above background road sediment delivery
 - IDL CWE report
 - ≤50% above background mass failures
 - IDL CWE report

Stream bank erosion inventories

- 1. Forest-shrub mix
- 2. Grazed shrub
- 3. Intact forest
- 4. Road-slash-forest
- 5. Impacted brush
- 6. Harvest forest
- 7. Harvested forest
- 8. Brushy

Stream bank erosion Inventory Worksheet

STREAMBANK	EROSIO	NINVENTO	DRY WORK	SHEET						
Stream:	Martin Cree	k		Stream Segm	ent Location	1 (DD)	Elevation (ft)			
Section:	Reach 1			Upstream:	47.07372,-11	16.766				
Date Collected:			4/27/2005	Downstream	47.07339,-11	16.764				
Field Crew:	Zaroban et	al.		Landuse and	Notes:	forest	-shrub mix			
Data Reduced By:	Mark Shum	ar		represents 200	00m of Martin	and 27	'00m of Conrad			
Streamba	nk Erosio	n Calculat	ions				Streambank Ero	sion Reduction C	alculatio	ns
		Bank Height	1.7	ft			Eroding Area With Lo	ad Reductions	533.8	ft^2
Total	Inventoried	Bank Length	785				Erosion over sampled			
Inventor	ied Bank to	Bank Length	1570				reduction (20%)			tons/yr/sample
		Bank Length	181				Erosion Rate			tons/mile/year
Bank to Bank (Froding Seg	ment Length	362	ft			Feet of Similar Stream	т Туре	8073	
	Percent E	roding Bank	0.23057325					oltation (with reduction)	3543.2	
	E	Eroding Area	615.4				Total Streambank Erd	osion	32.52658	tons/y ear
	Re	cession Rate	0.12							
		Bulk Density		lb/ft^2			Recession Rate Cal	culation Worksheet		
Bank Erosion	over Sampl	ed Reach (E)	3.32316	tons/y ear/sam	ple reach		Slope Factor	Rating		
	Eros	sion Rate (Er)		tons/mile/year			Bank Stability (0-3)	1		
		r stream type	8073				Bank Condition (0-3)	0		
		Extrapolation					Vegetative/cover on			
	otal Stream	bank Erosion	37.4987914	tons/year			Banks (0-3)	1		
							Bank/Channel Shape	-		
Summary for Load Reductions				downcutting (0-3)	3					
Existing		Prop	osed				Channel Bottom (0-2)	1		
	Total	Erosion	T-4-1				Deposition (0-1)			
			Total	06						
` ''			Erosion (t/yr)					1		
22.35195516	37.498791	19.38816	32.526576	13.25966851			Total = Slight (0-4);			
							Moderate (5-8); Sever	re		
							(9+)	7		
							Recession Rate	0.12		

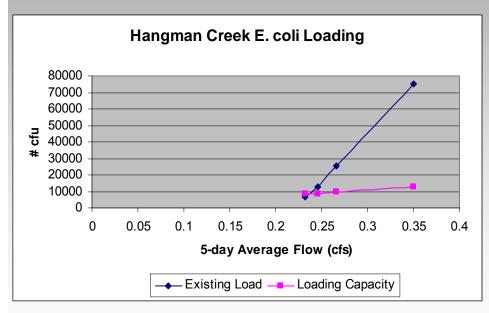
Sediment Allocation by Source

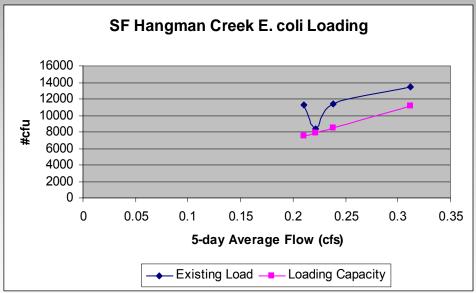
Source	Existing Load (t/yr)	Load Capacity (t/yr)	Reduction (%)
Stream banks	753	339	55
Roads	270	135	50
Mass failure	7	3.5	50
Total	1030	477.5	54

Watershed Sediment Reduction

 Watershed as a whole above the reservation requires a sediment reduction of 54% to achieve loading capacity.

Total Existing Erosion 752.6 tons/year


Total Proposed Erosion 339.4 tons/year


(339.4/752.6)-100 = 54%

Bacteria

E. coli standard is 126 cfu/100 ml

- Bacteria loading capacity is based on flow and standard.
- Flow converted to milliliters and then multiplied by 1.26.

Flows of 1cfs can contain 35,679 cfu of *E. coli* at loading capacity

Bacteria Load Capacity

Stream	Flow (cfs)	Load Capacity	Geo- means	% Reduction
Hangman Creek	0.35	11,203	74,992	85
	0.266	8,542	25,571	67
	0.246	7,899	12,741	38
	0.232	7,450	6,388	0
South Fork Hangman Creek	0.312	10,019	13,477	26
	0.238	7,643	11,355	33
	0.222	7,129	8,374	15
	0.21	6,744	11,251	40

TMDL Section 4 Past and Present Pollution Control Efforts

- Currently 2 paragraphs
- WAG input
 - List of known projects
 - List of future projects

Timeline and Milestones

- Continue with WAG meetings
 - October
 - November

Upcoming Meetings and Topics

October

- Comment of Draft TMDL findings
- WAG reviews entire Draft TMDL and comments to DEQ

November

- WAG comments incorporated into TMDL
- DEQ reports changes to WAG

Anticipating at least one if not two evening meetings

Upper Hangman Creek WAG Website

- Draft documents
- Meeting handouts
- Power point presentations
- Agendas
- Future meeting times

http://www.deq.idaho.gov/about/regions/upper_hangman_creek_wag/index.cfm

October Meeting

	October 2006							
Sun	Mon	Tue	Wed	Thu	Fri	Sat		
1	2	3	4	5	6	7		
-8	9	10	11	12	13	14		
15	16	17	18	19	20	21		
22	23	24	25	26	27	28		
29	30	31						